
ChocoPy
A Programming Language for

Compilers Courses

Rohan Padhye, Koushik Sen, Paul N. Hilfinger
(UC Berkeley)

1.

CS164 at UC Berkeley

The set-up

2

Course content

Compiler
Project

Language
Implementation

Strategies

Formal
Language

Design

3

12 weeks

Build a full Compiler
Translates valid <source language> programs into <assembly language>

4

(working in teams)

ChocoPy
A language that screams “Compile Me!”

5

Why did we develop ChocoPy?

Familiarity Specification Artifacts

6

Modern
Target

2.

What does a ChocoPy program look like?

The Language

7

ChocoPy Programs

def contains(items:[int], x:int) -> bool:
i:int = 0

while i < len(items):
if items[i] == x:

return True
i = i + 1

return False

if contains([4, 8, 15, 16, 23], 15):
print("Item found!")

class Animal(object):
makes_noise:bool = False

def make_noise(self: "Animal"):
if self.makes_noise :

print(self.sound())

def sound(self: "Animal") -> str:
return "???"

class Cow(Animal):
def __init__(self: "Cow"):

self.makes_noise = True

def sound(self: "Cow") -> str:
return "moo"

8

ChocoPy ⊂ Python
Every valid ChocoPy program

can be executed in a Python interpreter
(to get same result)

9

Language Reference Manual
Comprehensive (36 page)
specification of the ChocoPy language.

- Lexical structure of programs
- Formal grammar of syntax
- Typing rules
- Formal operational semantics

Place your screenshot here

10

Formal Typing rules & Operational Semantics

11

- Static typing with nominal subtyping

- Primitive types, objects, lists, None

- Top-level and nested functions

- Global, local, nonlocal variables

- Classes, attributes, methods

ChocoPy: Language features

- Native dictionaries

- List comprehension

- Exceptions

- Default arguments

- Lambdas, closures

12

4.

What do students work with?

The Project

13

A compiler in 3 parts (=assignments)

Parser Type
Checker

Code
Generator

ChocoPy
program

AST
(JSON)

Typed AST
(JSON)

RISC-V
assembly

14

Place your screenshot here

Web IDE

15

- Powered by student
or reference
compiler

- Self-documenting
assembly

- Step-through
debugging in browser

Place your screenshot here

Web IDE

16

- Powered by student
or reference
compiler

- Self-documenting
assembly

- Step-through
debugging in browser

Place your screenshot here

Web IDE

17

- Powered by student
or reference
compiler

- Self-documenting
assembly

- Step-through
debugging in browser

Assignment resources

18

Auto-grader

Language reference manual

Java-based starter code
RISC-V implementation guide

Web IDE
Reference compiler

5.

How do it go?

Experience

19

- Near-zero learning curve

- Language extensions intuitive

- Web-based IDE works well

- Student compilers beat CPython

Takeaways from 2 ½ semesters

- Lots of text to read

- Project is quite large

- Auto-grading error cases is tricky

20

Media

21

Hacker News (Front Page #4) TechRepublic.com

chocopy.org

Running your own course?
instructors@chocopy.org

Presentation template by SlidesCarnival

22

