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1.

CS164 at UC Berkeley

The set-up
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12 weeks

Build a full Compiler
Translates valid <source language> programs into <assembly language>
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(working in teams)



ChocoPy
A language that screams “Compile Me!”
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Why did we develop ChocoPy?

Familiarity Specification Artifacts
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Modern
Target 



2.

What does a ChocoPy program look like?

The Language
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ChocoPy Programs

def contains(items:[int], x:int) -> bool:
i:int = 0

while i < len(items):
if items[i] == x:

return True
i = i + 1

return False

if contains([4, 8, 15, 16, 23], 15):
print("Item found!")

class Animal(object):
makes_noise:bool = False

def make_noise(self: "Animal"):
if self.makes_noise :

print(self.sound())

def sound(self: "Animal") -> str:
return "???"

class Cow(Animal):
def __init__(self: "Cow"):

self.makes_noise = True

def sound(self: "Cow") -> str:
return "moo"
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ChocoPy ⊂ Python
Every valid ChocoPy program 

can be executed in a Python interpreter
(to get same result)
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Language Reference Manual
Comprehensive  (36 page) 
specification of the ChocoPy language. 

- Lexical structure of programs
- Formal grammar of syntax
- Typing rules
- Formal operational semantics

Place your screenshot here
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Formal Typing rules & Operational Semantics
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- Static typing with nominal subtyping

- Primitive types, objects, lists, None

- Top-level and nested functions

- Global, local, nonlocal variables

- Classes, attributes, methods

ChocoPy: Language features

- Native dictionaries

- List comprehension

- Exceptions

- Default arguments

- Lambdas, closures
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4.

What do students work with?

The Project
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A compiler in 3 parts (=assignments)

Parser Type 
Checker

Code 
Generator

ChocoPy
program

AST
(JSON)

Typed AST
(JSON)

RISC-V
assembly
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Place your screenshot here

Web IDE
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- Powered by student 
or reference 
compiler

- Self-documenting 
assembly

- Step-through 
debugging in browser



Place your screenshot here

Web IDE
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Place your screenshot here

Web IDE
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- Powered by student 
or reference 
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- Self-documenting 
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Assignment resources
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Auto-grader

Language reference manual

Java-based starter code
RISC-V implementation guide

Web IDE
Reference compiler



5.

How do it go?

Experience
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- Near-zero learning curve

- Language extensions intuitive

- Web-based IDE works well

- Student compilers beat CPython

Takeaways from 2 ½ semesters

- Lots of text to read

- Project is quite large

- Auto-grading error cases is tricky
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Media

21

Hacker News (Front Page #4) TechRepublic.com



chocopy.org

Running your own course? 
instructors@chocopy.org

Presentation template by SlidesCarnival
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