ChocoPy v2.2: RISC-V Implementation Guide

University of California, Berkeley

October 31, 2019

1 Introduction

This document is intended to accompany the ChocoPy language reference manual, to serve as a
guide for developers wishing to implement a ChocoPy compiler that targets the RISC-V instruction-
set architecture.

Specifically, this guide assists with the task of generating RV32IM'! assembly code for a se-
mantically valid and well-typed ChocoPy program. This guide is not a complete specification; it
is the developer’s responsibility to implement the full operational semantics listed in the language
manual. The design decisions described in this guide mirror the design of the official reference
implementation, which is not optimized for maximum performance. Developers are free to tweak
any or all of these design choices.

2 Naming conventions

The RISC-V assembly program generated for a ChocoPy program uses a single global namespace.
To ensure unique naming, each such program entity is referred to by its fully-qualified name (FQN).
FQNs are defined as follows. A class with name C has a FQN of C. A global variable with name v
has FQN of v. A function f defined in global scope has a FQN of f£. These names do not collide
since they are distinct in the global namespace of the ChocoPy program as well. A method m
defined in class C has FQN of C.m. A nested function g defined inside a function or method with
FQN F has a FQN of F.g. A local variable v defined in a function or method with FQN F has a
FQN of F.v. An attribute a defined in a class C has a FQN of C.a. As an example, consider the
program:

class C(object):
def f(self:"C") -> int:
def g() -> int:
x:int = 1
return x
return g()

cO.£0O

Here, the local variable x has a FQN of C.f.g.x.

'RV32IM is the 32-bit version of RISC-V with integer-only arithmetic, including multiplication (and division)
instructions.

FQNs are used in creating global symbols in the generated RISC-V program. Global symbols
are declared using the .globl directive and defined by specifying a label with the symbol name.
In most cases, the symbol names prefix FQNs with a dollar sign to avoid conflicts in the global
namespace with identifiers that the linker understands (such as main and exit). The following are
the conventions for global symbols in the assembly program:

e Global variables with FQN of N have a global symbol of $N.
e Functions and methods with FQN of N have a global symbol of $N.

e Dispatch tables (ref. Section 4.1) for classes with FQN of N have a global symbol of
NdispatchTable.

e Prototype objects (ref. Section 4.3) of classes with FQN of N have a global symbol of
Nprototype.

Attributes and local variables do not have global symbols dedicated to their definition.

3 Register conventions
The following RISC-V registers have special meaning;:

e a0 contains the returned value at the end of a function call. This register is also used to pass
arguments to built-in routines (ref. Section 6). The value of this register is not preserved across
function calls.

e ra contains the return address upon function invocation. The value of this register is not
preserved across function calls.

e fp (alias for register s0) contains the current frame pointer. The value of this register is preserved
across function calls.

e sp contains the current stack pointer. In particular, sp points to the top of the stack. The value
of this register is preserved across function calls.

e gp points to the next free address in the heap. The value in this register is updated only when
a new object is allocated, or during garbage collection.

e s10 is reserved for pointing to the beginning of the heap. The value of this register is never
modified by code generated for ChocoPy statements.

e s11 is reserved for pointing to the end of the heap. The value of this register is never modified
by code generated for ChocoPy statements.

The registers a0—a7 and t0-t6 are available for use as temporaries; their contents are not pre-
served across function calls. As per RISC-V convention, the values in registers s1—s9 are preserved
across function calls; ChocoPy functions may use these registers as long as their old contents are
restored before returning.

Type tag
Size in words (= 3 + n)
Pointer to dispatch table

0 =~ O

12 Attribute 1
16 Attribute 2
8 +4n Attribute n

Figure 1: Object layout for an object with n attributes. The numbers on the left denote the offset
in bytes from the start of the object record.

4 Objects

Program values in ChocoPy are always objects, with the exception of the special value None.
Objects are usually represented by their 32-bit address in memory. The None value is represented
by the special address 0.

4.1 Object layout

Figure 1 depicts the layout for a ChocoPy object in memory. An object is a record containing 3 or
more slots, each the size of a 32-bit word. The first 3 slots have a common meaning to objects of
all types, and together are referred to as the object’s header.

The first slot in the header contains a type tag. The type tag is a 32-bit integer that uniquely
represents the dynamic type of the object. The following type tags are fixed for every ChocoPy
program?:

Type tag | Type
0 | (reserved)

1| int

2 | bool

3 | str
-1 | [T]

The type tag for lists is the same for lists of any element type. ChocoPy lists do not need to store
their statically declared element types at run-time. The dynamic type of objects contained in the
list can be determined by accessing their corresponding type tags. Objects of user-defined classes
use type tags that are not listed in the table above.

The second slot in the object’s header is the size of the object in words. For objects of classes
with n attributes (including inherited attributes), the size is always 3 4+ n. For lists containing n
elements, the size is 4 +n. For strings of length k, the object size is 4+ [(k+1)/4]. The expression
[(k+ 1)/4] computes the number of words required to store k bytes of the string’s characters,
including a null-byte terminator.

The third slot in the object’s header is the address of the object’s dispatch table in memory.
The dispatch table for a class having m methods contains m words, each word representing the

2These type tags are recognized by the reference implementation of the predefined functions print and len.

address of the method’s code. For a class named C, the global symbol for its dispatch table is
CdispatchTable.

The object’s header is followed by its attributes. Each attribute takes up one slot. For objects
of user-defined classes, attributes store addresses of the objects they reference, or the address 0 to
denote the None value. Objects of predefined classes and of list type have special attributes:

e int objects have a single attribute called __int__, which contains the 32-bit integer value that
the object represents.

e bool objects have a single attribute called __bool__, which contains the 32-bit integer 1 or 0,
depending on whether the object represents the value True or False respectively.

e str objects have two attributes. The first attribute is called __1len__ and it contains the 32-bit
integer length of the string. The second attribute is called __str__ and is of variable size. This
attribute contains the sequence of bytes that make up the string’s characters, followed by a
terminating null byte3. This sequence is then appended with zero or more null bytes as padding
until the total number of bytes is a multiple of 4.

e List objects have one attribute called __len__, which contains n, the 32-bit integer length of
the list. This attribute is then followed by n word-sized slots containing the addresses of list
elements (or the address 0 for None values) in sequence.

4.2 Unwrapped Values

Parameters, local variables, global variables, and attributes whose static types are int or bool are
represented by simple integer values. This is possible because of the rule in ChocoPy that None is
not a value of either type, so that there can be no confusion between 0 or false on the one hand,
and None on the other. We say that these two types are usually unwrapped or unboxed. Only when
assigning them to variables of type object is it necessary to “wrap” or “box” them into the object
representations described in Section 4.1 so that their actual types can be recovered by functions
that expect to receive pointers to objects. The unwrapped values are the same as those that would
be stored in the __int__ or __bool__ attributes of the object forms. This unwrapped representation
considerably speeds up the execution of code that manipulates integer and boolean values.

4.3 Protoype objects

For each class with name C, the global symbol Cprototype points to a protoype object of that
class. A prototype is an object in memory whose attribute slots contain their initial values, as
defined in the ChocoPy program. For predefined classes int, bool, and str, the initial values of
their attributes correspond to the values 0, False, and the empty string "" respectively.

Object prototypes are useful for constructing new objects. Instead of executing code to initial-
ize an object’s header and attributes, the prototype can simply be copied to the next free address
in the heap. Section 6 describes the built-in routines that perform this operation.

3The string representation contains redundant information due to the combination of the length attribute and the
terminating null byte. However, this enables fast bounds checks as well as fast I/O operations.

lower addresses

lower addresses

sp — Ui
Sp — (079 :
i

a1 control link

static link return address
fp — (79)
{caller’s temporaries}

. al

static link

{caller’s locals}

{rest of}

{caller’s control link} {caller’s stack frame)

{caller’s return addr}
fp— higher addresses

(b) During callee’s execution

higher addresses

(a) Before/after invocation

Figure 2: Stack layouts during the invocation of a nested function with n arguments a1,...,a,
and k local variables having initial values [y, ...,lx. The diagram on the left shows the state of
the stack just before the function is invoked (and just after it returns). The diagram on the right
shows the state of the stack just before executing the called function’s first statement. The stack
layouts are similar during invocations of global functions and methods, except that the static link
is not present.

4.4 Constants

The reference compiler emits constant values corresponding to integer, boolean, and string literals
found in a ChocoPy program to the global data section. Since objects of type int, bool, and str
are immutable, multiple occurrences of the same literal can refer to the same constant object in
memory. The emitted constants are therefore globally unique. The global symbols corresponding
to constants have names with prefix const_ and a unique integer as suffix. For example, const_0
and const_1 usually refer to the objects corresponding to the values False and True respectively.

5 Functions and methods

5.1 Calling convention

The ChocoPy implementation on RISC-V specifies the following calling convention to enable inter-
operability between predefined functions, user-defined functions, and externally defined functions.

e At function invocation, the register sp points to the element last pushed on the stack by the

caller.

e At function invocation, the register ra contains the return address, i.e., the address from which
program execution must continue after the called function returns.

e The caller expects the value of sp and fp to be preserved across a function call. The value of
ra and temporary registers need not be preserved.

e The called function (a.k.a. the callee) returns the result in register a0.

5.2 Activation records

The reference compiler implements the calling convention in the following way. While executing a
function’s body, the register £p contains a pointer to a data structure called the activation record,
which stores the contents of the function’s parameters and local variables. On function invocation,
the callee saves the contents of registers fp and ra in its own activation record before updating
register fp with the address of this new record. When returning to its caller, the callee restores the
old value of fp by retreiving it from its own activation record.

The saved value of the address of the caller’s activation record is called the control link*, since
it points to the activation record of the function where program control will return once the current
function completes its execution.

The parameters for a nested function include an additional parameter called the static link.
The static link points to the activation record of the latest dynamic instance of the nearest statically
enclosing function or method. For example, if function g is nested inside function £, then the static
link in the activation record of g points to the activation record of the latest execution of £. In
ChocoPy, the static link is used to implement static scoping within nested functions, giving access
to the proper instances of nonlocal variables.

5.3 Stack frames

The activation record is implemented on the stack in a layout called the stack frame, as shown in
Figure 2(b). The frame pointer (register £p) points to the bottom of the frame, specifically to the
topmost element of the preceding stack frame. The stack frame contains the following information
in top-to-bottom order:

1. actual parameters to the function it is calling (if applicable),

2. the static link for the function it it calling (if applicable),

3. temporary storage for intermediate results of expression evaluation or other operations,
4. the values of the local variables of the function,

5. the saved frame pointer of its caller (a.k.a the control link or dynamic link),

6. the saved return address. Its own actual parameters and static link are in the frame immediately
below it.

4In some languages, this link is also known as the dynamic link since it can be used to implement dynamic scoping.

The local variables and parameters are stored in reverse order; that is, the variables or pa-
rameters declared earlier in the ChocoPy program are stored towards the bottom of the stack. As
per RISC-V convention, the stack grows towards lower addresses; that is, the top-of-stack has the
smallest address.

Figure 2(a) shows the layout of the stack at the time of function invocation. The caller pushes
the arguments on the stack in left-to-right order. When calling nested functions, the static link is
pushed on the stack before the first argument. The layout of the stack is exactly the same when
the called function returns. On return, the caller pops the arguments off the stack.

The static link is not passed to global functions or to methods. For methods, the first argument
is the address of the object whose method is being invoked.

6 Execution environment

The execution environment for a ChocoPy program consists of predefined functions and methods
as well as built-in routines that are always available. The following global symbols are always
generated for predefined functions and methods: $print, $input, $len, and $object.__init__.
The assembly code for these functions is hand-written in the reference compiler. These functions
are invoked using standard ChocoPy calling conventions (ref. Section 5).

The reference compiler also defines the following built-in routines, whose argument-passing
convention is slightly different:

e alloc: Allocates a new object on the heap. The routine expects the address of the object’s
prototype (ref. Section 4.3) to be provided as argument in register a0. The routine returns with
the address of the newly allocated object in register a0. This routine updates the gp register.
This routine may invoke garbage collection during its execution.

e alloc2: Allocates a new object on the heap with custom size. Like alloc, this routine expects
the address of the object’s prototype in register a0. Additionally, this routine takes a 32-bit
integer as a size argument in register al. The newly allocated object will be trimmed or extended
to fit in size words. The value of size should be at least 3, in order to accommodate the object’s
header. This routine is useful in implementing string and list operations such as concatenation.
Like alloc, this routine updates the gp register and may invoke garbage collection during its
execution.

e abort: Exits the program with an erroneous-exit code after printing an error message.

The error message should be provided as argument in register a0, as an address of a null-
terminated string of characters in memory. The exit code should be provided in register al
as a 32-bit integer. The following is an exhaustive list of error messages printed by ChocoPy
programs compiled using the reference implementation, along with their corresponding exit code:

Exit code | Error message
Invalid argument
Division by zero

Index out of bounds
Operation on None
Out of memory
Unsupported operation

O UL W N~

The “Invalid argument” error is raised only by the predefined functions print and len, when their
arguments are not printable or iterable respectively. The “Unsupported operation” error is raised
only by the predefined function input, which has not currently been implemented in the reference
compiler.

The built-in routines do not have a dollar sign in front of their names; therefore, the names
of these routines do not conflict with global ChocoPy functions. ChocoPy programs cannot in-
voke these routines directly; in fact, the arguments expected by these routines are not necessarily
ChocoPy objects. Apart from the argument-passing convention, the routines should be treated
similarly to function calls. Values held in temporary registers must be saved by the caller before
invoking a built-in routine, since the routines themselves make use of several temporary registers.
Just like standard calling convention, the value of registers fp, sp, and s1-s11 are preserved across
the routine’s invocation.

7 Garbage collection

ChocoPy does not provide means for programmers to manually free memory. An object is live if
it reachable from any value in program registers, on the stack, in the global data area, or from an
attribute of a live object. Objects that are not live may be destroyed and their memory reclaimed
by a process known as garbage collection.

Garbage collection has not yet been implemented in the current reference implementation.
However, the object layout and heap-register conventions are sufficient for implementing a conser-
vative GC.

